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The relations between the Helhnann-Feynman forces in laboratory fixed (L-) and relative (R-) 
coordinate systems are clarified. In the usual L-coordinate system, the force is interpreted as force on 
nucleus, while in the R-coordinate system, it means force on whole particles consisting of the electrons 
and nuclei of each interacting subsystem. From a perturbation theoretical viewpoint, the concept 
of the force on whole particles correctly corresponds to the perturbation energy and is superior to the 
force on the nucleus. 
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1. Introduction 

The energetic method and the force method are the two basic approaches to 
physical and chemical phenomena.  When one uses the electrostatic Hellmann- 
Feynman (H-F) theorem [1, 2] instead of taking the derivative of  the calculated 
energies, one obtains very intuitive physical pictures which are entirely different 
f rom the conventional energetic theories [3]. This physical simplicity has been 
fully used previously in the development of  the electrostatic force (ESF) theory 
for molecular structures, chemical reactions, and long-range forces [4, 5]. 

In comparison with the energetic theories, the force approach has a deficiency 
in that the calculated H-F  forces are more sensitive to inaccuracies of  the wave- 
functions used [6, 7]. The energetic theory and the H-F  force theory give identical 
results only when the wavefunction used in the calculation satisfies the stable 
condition of  Hall [8]. The exact wavefunction, Har t ree-Fock wavefunction, the 
floating wavefunction of Hurley [9], etc. have such properties [6, 107. The fully 
reliable force calculations are therefore still limited at present. 

For  long-range interactions between two atoms, where the exact or nearly 
exact wavefunctions of  lower orders can be obtained by perturbat ion theory, the 
force approach has given accurate and yet intuitive results [5, 11]. The ESF theory 
has shown that the origin of the long-range forces between two atoms are the 
atomic dipole (AD) and the extended gross charge (EGC) forces [5]. These force 
concepts are quite different f rom the energetic theories and more  general in that 
the basic concepts are common to other important  fields such as molecular 
structures and chemical reactions [4]. 

Although the previous H-F  force calculations have been done using laboratory 
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fixed (L-) coordinate system [5, 11], it is also possible to use relative (R-) coordinate 
system for the study of the long-range H-F forces. In the L-coordinate system, all 
the electrons and nuclei of the interacting system are measured independently 
from a common origin, but in the R-coordinate system, the electrons and nuclei 
of each interacting subsystem are measured from the origin fixed on each sub- 
system. The latter can be defined unambiguously only when the electron exchange 
between subsystems can be neglected, i.e., only for long-range interactions. 
Yaris [12] emphasized the advantage of the R-coordinate system from the per- 
turbation theoretical viewpoint and gave results different from those of Salem 
and Wilson [7] who used the L-coordinate system. Steiner [13] reexamined the 
long-range H-F force study of the H 2 system due to Hirschfelder and Etiason [11]. 
He called the force in the L-coordinate system force on nucleus and that in the 
R-coordinate system force on atom and showed some important relations between 
these forces. 

In this paper, we study the relations of the forces in the L- and R-coordinate 
systems in a more general fashion. We will show that the force in the R-coordinate 
system, which we call force on whole particles, is superior to the force in the 
L-coordinate system from the perturbation theoretical point of view. The force 
on whole particles is the concept which corresponds exactly to the conventional 
energetic perturbation theory and especially, the force on whole particles correct 
up to order 2n + 1 canbe obtained only from the knowledge of the wavefunction 
to order n. This means that the H-F force approach is not necessarily inferior to 
the energetic approach at least for long-range interactions. The force in the 
L-coordinate system does not have such properties. Several new concepts associa- 
ted with the force on whole particles and the differences from the previous ESF 
treatment [5] will be discussed. The results will be applied to three illustrative 
examples, long-range interactions in H(ls)-H +, H(ls) H(ls), and NH 3 H + 
systems. 

2. Force on Whole  Particles 

We consider the long-range force between two subsystems ~ and/3 at a distance 
large enough for electron exchange between them to be negligible. The subsystem 

(e.g., atom or molecule) is assumed to include sets of electrons {a} and nuclei {A}. 
The positions of electrons and nuclei are denoted respectively by r and R in the 
L-coordinate system and by ~ and R in the R-coordinate system. The present 
analysis is restricted for simplicity to the case of two subsystems, but the discussion 
is the same for the case of many subsystems. 

2.1. Force Operators 

The Hamiltonian for the total system, Yf, can be divided as 

~ = Y g o + ; ¢ l ,  (1) 

where 3¢~0 is the unperturbed Hamiltonian for the isolated subsystems with the 
eigenfunction [0) and ~/fl the Coulombic interactions between all the charges in 
the subsystem ~ and in the subsystem/3. 
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(a) Laboratory fixed (L-) 

coordinate system 

(b) Relative (R-) 

coordinate system 

Fig. 1. Coordinate  systems 

In the usual discussion of forces, the force operator for the nucleus A is expressed 
using the L-coordinate system as 

~-A = -- (83¢'/¢?Ra) = -- (8fi0/ORA) -- (0fir I/0RA). (2) 

For the long-range interactions between two atoms, we have shown previously 
that the operators --(8ogg0/SRA) and --(82/gl/SRA) are the AD and EGC force 
operators, respectively. The former gives the AD force due to the polarization of 
the electron cloud of the atom A and the latter gives the EGC force which repre- 
sents the semi-classical electrostatic interactions between the two atoms [5]. The 
AD and EGC force operators are the zeroth- and first-order operators with 
respect to the perturbation. 

In a perturbative sense, the differential operator in the L-coordinate system, 
(8/ORA), in Eq.(2) does not satisfy the prerequisite of perturbation theory. Since 
fifo and I 0) for the isolated system should be independent of the nuclear position, 
the differentials of f i 0  and [0) should vanish identically, but (Sfi0/~?RA) and 
(SI0)/SRA) do not. As shown later, the operator in the R-coordinate system, 
(8/0Ra), satisfies this prerequisite. 

Fig. 1 illustrates and compares the L- and R-coordinate systems. In the L- 
coordinate system all the positions of the electrons and nuclei are measured 
independently from the fixed origin O, while in the R-coordinate system they are 
measured from the relative origin A except for the nucleus A. 

RA = RA, 

~,,, = RA, - ~A (A' = A',  A ",...), (3) 

~a=r,--lla (a=a, a',...). 

Since 8RA/63R a = ORA,/OR A . . . . .  ~ra/OR A . . . . .  l ,  the differential operators in the 
L- and R-coordinate systems are connected by the following important relation. 

(8G/OflA) = ~ (OG/ORA) + ~ (OG/0ra), (4) 
A a 

where G is an arbitrary function of positions of electrons and nuclei. On the 
1.h.s. of Eq.(4), G is represented in the R-coordinate system, while on the r.h.s., 
it is represented in the L-coordinate system, according to the transformation (3). 
In the R-coordinate system, the derivative of f i 0  vanishes, 

(afio/SR,O =0,  (5) 
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i.e., the force operator in the R-coordinate system satisfies the prerequisite of  
perturbation theory. From Eqs.(4) and (5), we get 

- ( a f t  I/OI{A) = -- E ( a f / a R A )  -- E (S f /S ra ) ,  (6) 
A a 

where f on the r.h.s, of  Eq.(6) can be replaced by f l .  In Eq.(6), the first term 
of  the r.h.s, is the sum of  the force operators on all the nuclei {A} of  the subsystem c~. 
The second term is interpreted as the sum of the force operators on all the 
electrons {a} of the subsystem ~. Therefore, the force operator in the R-coordinate 
system, - - ( S f l / S f ~ A ) ,  is understood as the force operator on whole particles of  
the subsystem ~. We designate it as -&-=. 

~ = - ( a f ~ / a f ~ ) .  (7) 
The force on "a tom"  previously introduced by Steiner [13] for the long-range 
interaction of  two hydrogen atoms corresponds to the special case. In contrast, 
the force operator in the L-coordinate system, ~'~a of Eq.(2), may be called force 
operator on nucleus. 

In the R-coordinate representation, 

0 = ~ (SYdo/SRA) + ~ (SYC'o/&a), (8) 
A a 

from Eqs.(4) and (5), and this means that the sum of internal forces is zero for an 
isolated subsystem. 

2.2. Forces 

By the H-F theorem [1, 2], the force on nucleus A is given as 

FA = < ~'1- (of/al~A)l ~> 
= < ~lv[_ (($jg~0/aR A)[ u/t> + < ~'l- (aJ~al /aRA)[ u/t>, (9) 

where I~ u> is the exact wavefunction of  the total system. The force on whole 
particles in the subsystem c~ is defined as 

F~ = < I/J I - ( a f / aRA)]  ~> 

= < ~'1 - ( a f  1 / a ~  )1 ~ >. (1 o) 

From Eq.(6), F~ is the sum of the forces on the nuclei {A} and on the electrons {a}. 
However, the forces on the electrons {a} vanish identically for exact wavefunctions i. 

F. = < 7/[ - ( s f / a r , ) ]  kg} = 0. (11) 

Then, 

F ~ = Z F  A. (12) 
A 

1 The partial differentiation of the electronic Schr6dinger equation 24~] k¢)= t gJ)E with respect to 
r. and the operation of <TJ I yield <~g[0Jf/3r.[~ v) =aE/aro =0. Eq.(l 1) does not hold when we replace 
Jg with Yfl (compare with the r.h.s, of Eq.(14)). 
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For exact wavefunctions, the force on whole particles thus reduces to the sum of 
the forces on the nuclei {A} in the subsystem e. The forces on electrons make no 
contribution to the force on whole particles. If  we interpret this fact, it may be 
said that the electrons in the exact wavefunction "lie" in the "equilibrium position". 
However, if we employ an approximate wavefunction, the force on electron will 
not vanish. Then, F a may give a kind of criterion for the accuracy of  the wave- 
function. 

2.3. Compar&on with the Concept in the L-Coordinate System 

In a previous paper [5], where the L-coordinate system was used, we have 
shown that the AD and EGC forces are the origins of  the long-range forces 
between two atoms. In the R-coordinate system, the concept of the AD force 
disappears since (8~O/~flA)=0, and instead a new force concept arises. From 
Eq.(4), we obtain 

- -  ( 6 3 2 / g ~ l l S R A )  : - -  Z (63Jt° l /ORA) --  2 (0~//° lI63ra) • ( l  3) 
A a 

The first term represents the EGC force operator in the ESF theory [5]. The 
second term is a new operator which represents the force that the electrons {a} 
of the subsystem ~ receive due to the long-range interaction with the subsystem +q. 
Inserting Eq.(8) into Eq.(11), we obtain 

< Z = < 2 (14) 
A a 

for the exact wavefunctionl. In the diatomic case, the 1.h.s. represents the A D force, 
and then the new force operator gives an equivalent value with the AD force. If we 
call the first term of  Eq.(13) the nuclear EGC force, the second term may be called 
electronic EGC force. As seen in the following sections, we have no need to 
calculate the electronic EGC force separately. Its calculation will be complicated 
because it includes the derivative of the electron-electron repulsion term. Moreover, 
since the R-coordinate system can be defined only for the long-range interactions, 
the present theoretical concepts are limited only to the long-range forces. This is 
a defect of  the present treatment in comparison with the wide applicability of the 
ESF theory [4, 5]. 

3. Perturbation Theory for the Force on Whole Particles 

In this section, we will show generally that the force on whole particles in 
the R-coordinate system is superior to the force on nucleus in the L-coordinate 
system in a perturbative sense. First, we summarize the results of  the conventional 
energetic perturbation theory [-14] in order to compare with the subsequent 
results. When the total Hamiltonian ~ is separated as in Eq.(1), the total wave- 

function I~> and the energy can be expanded as I~>=  Ik> and E =  ~ Ek, 
k=0 k=0 
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where the unperturbed and nth-order wavefunctions satisfy 

(~o-  Eo)lO> =o, 

(~o-Eo)ln>+~lln-l>= ~ In-k>Ek, n = l ,  2,..., (15) 
k=l 

and the perturbation energies are expressed as 

E1 = (0[~efl[0}, 
n-  1 . (16) 

E.=<0l~xln-l>- y. <OIn-k>E~, n = 2 ,  3 .... 
k=l  

I f  ~ 1 is Hermitian, the energy correct to order 2n + 1 can be obtained f rom the 
wavefunctions only to order n. 

f k-1  - Z @ + J - k i n - J > ,  
k=l j=o (17) 

E~.+~=<nl~xln>- Z Ek <n+l+j-kln--j>,n=l, 2 .... 
k=l j=0 

The normalization condition we used is (7~[ ~ }  = 1, i.e., 

<kln-k>=O, n = l ,  2,... (18) 
k=0 

The nth-order forces on nucleus and on whole particles are obtained f rom 
Eqs.(9) and (10) as 

n--1 
F ~ =  <kl-(a~o/aRa)ln-k>+ Y~ < k [ - ( a , ~ l / a R A ) l n - k - l > ,  (19) 

k=O k=O 
n-1 

~-- E <kl-(a~/a~a)ln-k- 1>, n =  1, 2 , . . .  (20) 
k=0 

These equations show that the force on nucleus correct to order n, F~, requires 
the wavefunctions up to order n, while the force on whole particles, F~, requires 
the wavefunctions up to order n - 1 .  This simplification for the force on whole 
particles comes f rom the relation ( 0 ~ o / ~ R A ) =  0. 

In a previous study of  the long-range force of  the H H + system, we have 
pointed out that although the nth-order force on H + is obtained by the wave- 
function to order n - 1, the nth-order force on the nucleus of  the hydrogen a tom H 
requires the wavefunction to order n I-5]. The reason for this difference is that  the 
force on H + corresponds to the force on whole particles, but the force on the 
nucleus of  H does not. I f  we consider the force on hydrogen atom instead of  the 
force on the nucleus of H, the nth-order force is determined by the wavefunctions 
to order n -  1, as expected. 

In the following paragraphs,  we prove that the force on whole particles is 
equal to the derivative of  the perturbat ion energy (16) and moreover  that the 
wavefunction to order n determines the force on whole particles to order 2n + 1. 
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This proof can be applied to all expectation values of t~f/02 which satisfy the 
condition t?Jg0/02 = 0. 

From the normalization condition (18), we obtain after some modification, 

{ (n-klk '>-(kl(n--k) '> }=O. (21) 
k=O 

Hereafter, prime means the derivative with negative sign, - (O/OfCA). Differentiation 
of Eq.(15) yields 

(aeo-Eo)l~'>---~ell(n-1)'>-~/l~-*>+ __E )n-k>E~ '. (22) 
k 1 

Operation of (m[ and cancellation of the term ( ~ o -  Eo) using the conjugate form 
of Eq.(15) give 

<m+l]~/ ln- l>=<ml~, ln '>-<m+l]J fa[(n- l ) '>-c  ... .  (23) 

where 

m+l 
Cm,, = ~ Ek(m-- k + l ln'> - 

k + l  k = l  
{Ek<m + l](n- k)'> + E/,(m+ l ln-k>}. 

(24) 

Substituting each term of Eq.(20) with Eq.(23), we get 

n - 2  

V~= <0l~ @ -  1> + <Ol~ll(n- 1)'>- ~ cj,._j 1, (25) 
j = O  

where 

Z Cj,._j_, = Ek(j-k[(n-J)'>- Z Ek<jl(n-k-J)' 
j = O  j = l  k = l  k = l  

n--j t + ~ E[,(jln-k-j> (26a) 
k = l  

In Eq.(26a), reversing the order of the summation j in the first term and inter- 
changing the summations j and k, we obtain 

n-2 n-1 n--k n--1 n-k 
Z cj,,_,_,= Z e~ Z (<n-~-jV>-<jp(n-k-j)'>)-Z e~ Z <Jln-~-J>. 

j = 0  k = l  j = l  k = l  j = l  

(26b) 

Using Eqs.(18) and (21), we get 

n - 2  n--1 n - 1  n 1 

Z cj,._j_l= Z E~<0l(n-k)'>+ Z EXOln-k>= • <Ol{In-k>E~}', (26c) 
j = O  k = l  k = l  k = l  

and therefore 

n 1 

F~"--<0]~;ln-l>+<0[~a[(n-l)'>- ~ <Ol{[n-k>&}'. (27) 
k = l  
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Expression (27) is nothing but the derivative of the energy expression (16). 

F~ = E ' ,  n = 1, 2 .... (28) 

Combination of Eqs.(17) and (28) gives 2nth- and (2n + 1)th-order expression for 
the force on whole particles. 

( ( n -  1)'l dn) + ( n -  llXe;ln) + ( n -  llXedn') - 

{ek(n + j -  kin -j>}', 
k :  1 j : 0  (29) 

k - 1  

- Z {Ek(n+l+j-kln-J)}', 
k = l  j = 0  

n = l ,  2,... 

Now, we have proven the foregoing statements. Eq.(28) shows that the nth- 
order force on whole particles is identical with the derivative of  the nth-order 
perturbation energy. Eq.(29) shows that the wavefunctions (and their derivatives) 
to order n determine the (2n + 1)th-order long-range force, just as they do for 
the perturbation energy. This holds only for the force on whole particles, not for 
the force on nucleus. When we discuss the long-range force between two atoms 
with a large separation R, where the multipole expansion is used in the perturbation 
Hamiltonian, --(O/ORA) becomes O/OR and the derivatives of  wavefunctions and 
perturbation Hamiltonian are obtained quite easily. Salem and Wilson concluded 
in general that the H-F approach (force on nucleus) seems to be a much "weaker"  
method of calculation than the energetics [7]. However, their conclusion does 
not apply to the calculation of long-range forces, because there we can always 
introduce the concept of the force on whole particles in the R-coordinate system. 
Thus, the force method is as useful as the energetic one at least for the long-range 
forces. 

4. Applications 

In this section, we calculate the leading terms of the long-range forces for 
H(ls)  H +, H(ls) -H(ls) ,  and N H 3 - H  + systems. Calculation of  the force on whole 
particles, instead of  the force on  nucleus, overcomes the computational difficulty 
in the previous works [5, 11]. Indeed, the zeroth- and first-order wavefunctions 
determine the force on whole particles (atom) up to the third-order in the first 
two examples. Thus, equivalence of the force and energetic treatments is confirmed. 
In the last example, the N H 3 - H  + system, we estimate the forces on N and H 
nuclei in the N H  3 molecule using the concept of force on molecule. 

4.1. Long-Range Force for the H(ls) and H + System 

In our previous work [5], the leading term of the long-range force of this 
system was calculated using the L-coordinate system in three different ways, i.e., 
two no-resonance treatments and a resonance one. All of these calculations gave 
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Table 1. Leading terms of the long-range forces, 
F ~, F z, and F 3, between a hydrogen atom and a 

proton (a.u,) 

F I F z F 3 

Previous work a 0 9R- 5 
Present work b 0 9R 5 1491/4R-8 
Energy derivative c 0 9R- s 1491/4R- 8 

" Ref. 5. The force on the nucleus of a hydrogen atom is 
given. The second-order wavefunction is used for the 
calculation of F z. 

b The force on hydrogen atom is given. The zeroth-and 
first-order wavefunctions determine all of the F 1, F z, 
and F 3. 

c Refs. [15] and [16] of the text. 
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identical results. Here, we show only no resonance treatment, since the other 
calculations can be carried out similarly. 

The forces on whole particles up to the third-order are written from Eq.(29) as 

F 2 = <01 ~ 1 1 >  + < 1 1 ~  10>, 
F~ = <I'IJGII> + <11o~11> + < 11~111 '> - F0 < 111 > -El{(111)}  ', 

(30) 

which include only the zeroth- and first-order wavefunctions. In Eq.(30), prime 
means 8/~R and R is the internuclear distance. The zeroth-order wavefunction 
and the perturbation Hamiltonian are written as 

10) = ( I s )  = n -  1/2 exp(-?), (31) 

~ l = - r ' - l + R - X =  - ~ R k?k-lP k_I(cosO), 
k=2 

(32) 

where Pk(COS 0) is the Legendre polynomial and 0 is the angle between ~ and R. 
The first-order wavefunction was obtained as [-5, 15] 

[1)=re -1/2 exp(-~) L R-k('rk/k+'~k 1/( k -  1))Pk-I(COS 0). 
k=2 

(33) 

Using Eqs.(31)-(33), we get the leading terms of F 1, F 2, and F 3. The results are 
shown in Table 1. They agree with those obtained from the energetic method. 
Although our previous result of F 2 was calculated using the second-order wave- 
function, all of  the present values were evaluated only from the zeroth- and 
first-order wavefunctions. This is indeed a great simplification. 
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4.2. Long-Range Force between Two Hydrogen Atoms 

The perturbation Hamiltonian of this system is written as 

~ 1  = -r,-21 --rbl 1 +rl~ -~-R-1 = ~ Vk R-k" (34) 
k=3 

General formula for V k has been given by Hirschfelder and L6wdin [17]. 
Using the expansion (34), the leading terms of the force on hydrogen atom up 

to third order are given by Eq.(30) as 

(0r(VkR-k)'10>= --kR-l(01VkR- f0>, 
k=3 k=3 

f ~  = 2(0](FAR- 3) ' [1  ) = - -  6R-1 (0[ V3R - 311 ),  

f 3  = R( l [ V s R -  Sll ') + (1]( V s R -  5)'[1) = - l l R -  I ( I [VsR-  5]I ) ,  
(35) 

where we have considered only the term proportional  to R ~- 3 for the first-order 
wavefunction and therefore, ] 1 ' )  is - 3R-  111). On the other hand, the leading 
terms of  the interaction energies up to third order have been calculated as [17, 18] 

E l =  ~ (OlVkR-k]O) = ~ E l , k = O ; E l , k = O ,  
k=3 k=3 

E 2 -- (0] V3R- 311 ) = - 6.499026R - 6, (36) 

Ea = ( I [VsR-  5]1) = _ 3986R -11 

Noticing that the integrals appearing in these energy calculations are identical 
with those in the force calculations, we get from Eqs.(35) and (36) 

F~=k=~3--kR 1El,k=0, 

F~ = - 6R-  1E 2 = 38.994156R- 7, (37) 

F~ = - 11R- 1E 3 = 4384~6R- !2 

Since E2 and E 3 depend respectively on R-6  and R-11, the force results shown 
in Eq.(37) are just equivalent with the energy results shown in Eq.(36). Hirschfelder 
and Eliason [11] obtained using the first- and second-order wavefunctions the 
F 2 value of  39.001R-7 as the force on hydrogen nucleus, while we obtained using 
only the first-order wavefunction not only the best F z value 38.994156R -7 but 
also the F 3 value as the force on hydrogen atom. This comparison clearly shows 
the advantage of  the present force treatment, although both should give equivalent 
results as shown by Eq.(12). 

4.3. Long-Range Force between NH3 and Proton 

This is a good example to illustrate the relations of  the forces on nuclei, the 
forces on whole particles, and the energy derivatives. We assume that the proton 
is situated on the symmetry axis (z-axis) of  the ammonia molecule with a large 
distance R (Fig. 2). 
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1 ~ ° . . °  
~ H ~  .. "~HI " 

:..- 

• °° 
• o . . . . . .  

i 
FH+ 

Fig. 2. Long-range forces in NHa-H + system 

The first-order energy of  the system has been obtained as 

E 1 = - 0.58R- 2 - -  0.744R- 3 + O(R- 4), (38) 

from the experimental results [19]. This interaction energy gives information 
about  the external force acting on the N H  3 molecule as a unit, but never gives 
information about  the internal forces in the NH3 molecule which are induced 
by the interaction with the proton. 

In the present force theory, the first-order forces along the axis are written 
from Eq.(12) as 

f = f ~  + 3F~, FN1H3 l 1 
F~H~ = - -  F~+ = # E 1 / O R .  (39 )  

Namely, the force on the N H  3 molecule is connected with the forces on the N 
nucleus and on the three H nuclei in the molecule. The forces on the nuclei, 
FN 1 and FH 1, are written as 

I 
F = ZN{2<0[~ ZNJrN3]I)-ZH+R-2}, 

a 

FH ~ = ZH{2<01Z zHJrH3[1) -- Z n + R -  2}, (40) 
t/ 

where Z is the nuclear charge and the wavefunctions are assumed to be real. 
Direct calculations of  the integrals in Eq.(40) are troublesome and unpractical. 
Instead, combining Eqs.(38-40), we get 

f Fr~=(k+3)-a{3ZH+(kZH-ZN)R 2+l'16kR-3+2"232kR-4+O(R-S)}' (41) 

FH ~ = (k + 3)- 1 {ZH, + (Z  N -  kZn) R- 2 + 1.16R- 3 + 2.232R- 4 + O(R- 5)}, 

where k means the ratio of  the two integrals. 

k = ZN<0 ] Z ZNa/rN3[ 1 > / Z H < 0 ]  2 ZHa/rH3] 1 )" (42) 
a a 

The leading terms proport ional  to R -2 in Eq.(41) are the charge-charge inter- 
actions between the proton and the shielded N and H nuclei. These terms are 
purely the internal forces and disappear as the whole molecule. The coefficients of  
R -  2 indicate that if k > ZN/Z n the forces on the nucleus N and on the nucleus H 
are attractive and repulsive, respectively, and if k < ZN/Z n the situation is in the 
opposite way. Since at a large separation Coulombic force dominates and the 
gross charges on the N and H nuclei in a free N H  3 molecule are negative and 
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positive, respectively, we expect k > ZN/ZH, and therefore the ammonia molecule 
will approach the proton with closing its umbrella (Fig. 2). Note that this expecta- 
tion will be valid only when the electron exchange between NH3 and H + is 
negligible. When the electron transfer from lone-pair orbital of  NH3 to H + 
becomes appreciable, the AD force on the N nucleus will transform to the exchange 
(EC) force between N and H +, and therefore the umbrella-opening will occur 
at this stage (see Ref. 4, Paper 1) 2. As expected, the H N H  angle in N H 2  is 109.5 ° 
in comparison with 106.6 ° in NH3 [20]. 

5. Summary 

In this report, we have studied the Hellmann-Feynman force approach to 
long-range interactions. The meaning and the perturbation theoretical properties 
of  the H-F theorem depend critically on the choice of the coordinate system, and 
the relations between forces in the L- and R-coordinate systems are clarified. 
In the L-coordinate system, the force is interpreted as the force on nucleus, while 
in the R-coordinate system, the force has the meaning of the force on whole particles. 
Here, the whole particles mean all the electrons and nuclei of  the interacting 
subsystem. For  exact wavefunctions, the force on whole particles reduces to the 
sum of  the forces acting on all the nuclei of the subsystem. Since ( ~ o / S R a ) : 0  
in the R-coordinate system, the force on whole particles comes entirely from the 
derivative of  the interaction Hamiltonian. When we partition the force in the 
R-coordinate system, a new force concept which may be called electronic EGC 
force arises and exactly substitutes, for diatomic cases, the AD force in the L- 
coordinate system [5]. The concept of the EGC force is preserved and may be 
called nuclear EGC force. 

The fact (~Jt~o/~Ra)=O means that the force operator in the R-coordinate 
system satisfies the prerequisite of the perturbation theory that the zeroth-order 
state should be completely non-interacting. This fact greatly simplifies the per- 
turbation theoretical calculation of the force on whole particles. The following 
important relations have been proved generally. (1) The nth-order force on whole 
particles is equal to the derivative of the nth-order perturbation energy. (2) The 
wavefunctions (and their derivatives) up to order n determine the force on whole 
particles to order 2n + 1 (however, the wavefunctions to order n determine the 
force on nucleus only to order n). Especially, relation (2) means that the force 
approach is not necessarily inferior to, but as useful as the energetic approach to 
the long-range forces. The computational difficulty of the H-F force pointed out 
previously vanishes as shown in the first two examples. Thus, the apparent 
perturbation theoretical contradiction between force and energetic treatments 
vanishes in the R-coordinate system, although the definition of the R-coordinate 
system is limited to the long-range interactions. In the last example, the property 
of  the force on whole particles is applied to estimate the long-range forces acting 
on the constituent nuclei in an interacting molecule. 

2 Similar behavior was found for the S~,2 reactions F-+CH3F-~CH3F+F- , etc. (Dedieu, A., 
Veillard, A. :J. Am. Chem. Soc. 94, 6730 (1972)). 
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